Vehicle Cost Calculation

From PikkaWiki
Revision as of 02:14, 28 October 2009 by PikkaWiki (Talk | contribs)

Jump to: navigation, search

This page outlines some basic cost calculations I use in my vehicle sets, both pre-calculated spreadsheet numbers, and the code used for variable running costs in the game. When designing a set in a spreadsheet, it's probably best to use standard numbers first, then fudge values for vehicles which you think need to be more or less expensive.

Base Costs

I use the following base costs:

  • 0F/4B8E for locomotive purchase, multiplier 08
  • 10/4B94 for wagon purchase, multiplier 0A
  • 2A/4C30 for locomotive running, multiplier 0B
  • 2B/4C36 for wagon running, multiplier 05

The NFO looks like this:

   1 * 7	 00 08 01 01 0F 08 08 // loco cost
   1 * 7	 00 08 01 01 10 08 0A // wagons cost
   1 * 7	 00 08 01 01 2A 08 0B // running cost
   1 * 7	 00 08 01 01 2B 08 05 // wagon running cost

Contents


Trains

Locomotives

Purchase Cost

Steam Locomotives

Weight in Tons * ProdCost

  • ProdCost is usually 0.25, but can be fudged between 0.2 and 0.3.

Example: 4-6-0 Jubilee, 126 * 0.25 = 32

Diesel and Electric Locomotives

Weight in Tons * Prodcost * (Horsepower / BaseHP )

  • ProdCost starts at 0.4 for early experimental diesels, 0.3 for 1960s production units, down to 0.22 for 21st century designs. Again, these numbers are fudgable if you think a particular vehicle should be more or less expensive. For electric locomotives, early vehicles are 0.5, and is down to 0.4 by the end of the century.
  • BaseHP is a "typical" power output for engines of that type/era. For diesels, I use 2000 for models designed before 1975, 2500 from 1975 to 1990, and 3000 after 1990. For large electrics, I use 4000.
  • Example: EE Type 3, 107 * 0.3 * (1750 / 2000) = 28

Running Cost

(Horsepower * EffCost) / (SuspCost - MaxSpeed)

  • EffCost is the efficency of the design, where a higher number is worse; 5 for most steam locomotives, with a slight bonus (down to 4.5) for later very large locomotives in NARS. 3.75 for most diesels, down to 3.5 for modern designs. 3 for most electrics. Very powerful locomotives may need lower numbers and very underpowered vehicles (eg railbusses) may need higher numbers.
  • SuspCost represents the wear and tear on the traction system and track, and is a number roughly imagined as the speed at which the vehicle will fall apart. I use 200 for steam locomotives and 300 for modern electric locomotives, 225 for first generation diesels and 250 for modern diesels.

Example: 4-6-0 Jubilee, (1550 * 5) / (200 - 90) = 70
Example: EE Type 3, (1750 * 3.75) / (225 - 80) = 45

Variable Running Cost